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We consider inviscid, incompressible flow down a backward-facing step. Using thin- 
aerofoil theory, a model is proposed in which the separated region downstream of the 
back face of the step consists of a constant-pressure zone immediately behind the 
step, followed by a Prandtl-Batchelor constant-vorticity region. The motivation for 
this model is a series of experimental studies which showed the pressure just 
downstream of the step to be almost constant in some upstream portion of the 
separated region. Previous models have ignored this constant-pressure region and 
agreement with experiment has not been good. Agreement with experiment is clearly 
superior using the constant-pressure/constant-vorticity model, though it is possible 
that the comparison could be improved still further by consideration of the 
behaviour of the shear layer after reattachment. Some discussion of such models is 
given. 

1. Introduction 
In this paper we shall describe an experimental and theoretical study of the flow 

field of a laminar, incompressible, steady uniform stream flowing past a backward- 
facing step. We shall only be concerned with flows that have high Reynolds number 
based on step height and where the boundary-layer thickness upstream of the step 
is much smaller than the step height. It is frequently stated in the experimental 
literature that this is the simplest example of a separated flow, since the separation 
point is fixed and the deflection of the mainstream flow is quite gradual after 
separation. Figure 1 represents the generally agreed qualitative picture of the mean 
flow field behind such a step. The mean velocity distribution behind the step (height 
H )  was measured by Moss & Baker (1980) and is presented in figure 2.  

Near the step, the wall pressure coefficient C,, defined by 

is negative, small and approximately constant. It rises gradually downstream to 
achieve a positive maximum near the reattachment point where the velocity at  the 
boundary changes sign, before falling gradually to zero far downstream. This 
description of the pressure was confirmed in the experimental study carried out by 
Narayanan, Khadgi & Viswanath (1974). However, they had to make some 



140 K .  O'Malley, A .  Fitt, T .  Jones, J .  Ockendon and P .  Wilmott 

Free stream - Dividing 
/ streamline 

I 
Comer vortex Recirculation 

PIQURE 1. General description of the mean flow field. 

x= 1 
H 

X - = 3  
H 

Free stream 

X - 
H 

FIQURE 2. Representative velocity distributions behind a step measured 
by Moss & Baker (1980). 

allowances for the fact that the pressure did not recover the value p ,  of the pressure 
far upstream because of the increased area downstream of the step. They were able 
to eliminate this effect by placing area-compensating wedges on the tunnel wall 
opposite the step. This slightly shortened the reattachment distance for each step 
height, the effect being accentuated as the step height increased. It also caused the 
variation of the pressure coefficient with step height to be decreased and, except for 
the region around the step and the endpoint of the wedge at x = 0 ,  the pressure 
distribution along the top wall of the tunnel was found to be more uniform. Figure 
3 shows a selection of their results, plotting ( p  -pmin) / (pmax  -pmin)  against ( x - , $ ) / H ,  
where pmin and p,,, are respectively the minimum and maximum pressures 
recorded, H is the step height and 2 is the distance from the step to the point on the 
downstream wall where the pressure coefficient C p  satisfies 

C,($) = B(Cp,,,-Cp,,,). 

It can be seen that the correlation collapses the results fairly successfully onto one 
line, and the general form of the pressure profile is as expected. 

The search for similarity characteristics was also pursued by Moss &, Baker (1980), 
who plotted the modified pressure coefficient C p  against x / x ,  where x, was the 
position of the reattachment point and 
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FIGURE 3. The results of Narayanan et al. (1974) plotted in terms of 2, the distance from the step 
to the position where the average pressure coefficient is attained. 

They found that this correlation gave excellent agreement between four different sets 
of experimental data : their own and those of Narayanan et al. (1974), Tani, Iuchi & 
Komoda (1961) and Roshko & Lau (1965). The universality of these results is 
discussed later with reference to the experimental results of the present study. 

The conclusion drawn from the experimental evidence reviewed above is that 
separated flows behind backward-facing steps in free streams of high Reynolds 
number have universal features. (Similar features can sometimes also be discerned in 
other 'thin' separated flows e.g. behind a trip on a wall (see for example Good & 
Joubert 1968, Ruderich & Fernholz 1986 and Eaton & Johnston 1981).) Fluid is 
entrained from the separated region into a turbulent shear layer which divides the 
separated flow from the external flow. Near its point of reattachment to the wall, the 
shear layer divides ; part of the fluid moves upstream into the separated flow and the 
rest moves downstream with the external flow. For steady flow, the mass of fluid 
entrained by the shear layer equals the mass of fluid returned to the separated flow 
near reattachment. Turbulence measurements reveal a complex flow structure 
within the shear layer. 

A t  least two theoretical models have been proposed for closed recirculating regions 
embedded in a uniform stream when the effects of viscosity have been assumed to be 
confined to layers thin compared to the free-stream displacement. 

One possibility is to postulate a model in the spirit of a Helmholz-Kirchhoff flow 
where the separated region has constant pressure, but the experimental evidence 
described above shows clearly that this model could only be valid over part of the 
separated region: indeed velocities as high as 0.4U, have been recorded in the 
separated region in some cases. A further disadvantage of this model is that if p ,  
exceeds the pressure in the separated region, this region must be convex and cannot 
therefore reattach tangentially to the wall downstream of the step. Normal 
reattachment is not possible as this would require a stagnation point in the flow, so 
that the only solution is a flow where the dividing streamline has zero slope 
everywhere. This problem formally disappears in the thin-body limit except near the 
point of reattachment in a region which is small on the outer lengthscale. If we ignore 
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FIGURE 5. Childress' (1966) streamline pattern behind the backward-facing step. 

the normal reattachment difficulty the Helmholtz-Kirchhoff model may be solved 
uniquely when the cavity pressure and reattachment length are given; these 
parameters may then be related to the step height as described in 93. If these values 
are at variance with the experimental results then we might postulate the existence 
of an 'afterbody ' of constant height, representing the downstream shear layer. 

An alternative possibility is the Prandtl-Batchelor proposal that the vorticity is 
constant, not necessarily zero, in the separated region. This has been studied in detail 
by Childress (1966) in the case of a thin region between two obstacles in an otherwise 
irrotational free stream (figure 4). (The Childress problem was generalized by Riley 
(1987). Cases where the recirculation region is not thin were considered by Sadovskii 
(1971) and Moore, Saffman & Tanveer (1988).) The Childress streamline pattern for 
the case of a backward-facing step is shown in figure 5.  The broken streamlines in the 
figure are indicative of the fact that, since Childress assumed a thin-body 
approximation, his analysis is not valid near the step. It should also be noted that 
since the recirculating region is separated from the main flow then across the curve 
S there can be a jump in the Bernoulli constant h so that 

h = b[q: - q,"l, 

where q is the flow speed and the subscripts e and i represent the regions external and 
internal to the recirculating region respectively. The techniques employed by 
Childress will also be used to analyse the composite model proposed in $3, where 
comparison will also be made with Childress' results. 

Before describing the experimental details in 92, we repeat the basic assumptions 
which we need to make in 93 to enable analytical progress to be made. They are that 
the flow is steady and incompressible and that viscous effects are confined to wall 
boundary layers of negligible thickness, a shear layer near the dividing streamline 
across which entrainment is negligible and, of course, to the generation of any 
constant-vorticity region which may be present. We also assume that all flow 
deflections from the free-stream direction are small. 

With these assumptions, it  transpires that the dividing streamline is the easiest 
flow variable to predict analytically. The most easily measured flow variable is the 
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wall pressure coefficient, but, assuming small flow deflections, these two quantities 
are simply related to each other through a Hilbert transform (see the Appendix). 

2. The experimental measurement of pressure and velocity distributions for 
flow down a step 

The experiments were conducted using an open loop wind tunnel to provide the 
flow. The dimensions of the working section were 50 cm x 50 cm, and a 30 mm 
step was constructed from Perspex 1.5 mm thick bolted to the wall. The flow in 
the tunnel was driven by an electrofan at the downstream end of the tunnel which 
drew air from the atmosphere via a two-dimensional bellmouth with a flow 
straightener and gauze a t  the inlet. In order to minimize boundary-layer effects, the 
step had a length of only 20 cm, and uniformity of the flow approaching the step was 
maintained by extracting air from beneath the step via a connection to a low- 
pressure region downstream of a resistance. The experimental arrangement is shown 
in figure 6. The free-stream total pressure was measured by a probe situated on the 
far side of the tunnel opposite the step. Static pressures on the wall upstream of the 
step, the step wall itself, and the wall downstream of the step were measured with 
respect to the static free-stream pressure using an electronic manometer. Flow 
velocities within the separated flow region were lower than the free-stream velocities, 
falling to zero at  the point of flow reversal. Thus very low velocities were to be 
measured. It was also necessary to determine the direction of the flow. To perform 
both functions, a special Pitot probe was constructed which consisted of a very small 
tube with a small hole drilled in the side. Measurements of Pitot pressure were made 
with the hole pointing either upstream or downstream and the position of flow 
reversal was found when these two pressures were equal. This measurement gave the 
local static pressure which in turn allowed the static pressure and the local velocity 
to be found. The measurements were made with respect to the nearest wall static 
tapping in order to increase the accuracy. This method constitutes a simple but 
effective method of flow measurement in a separated region. The free-stream 
dynamic head p, ,  - p a  in the experiments was 38.61 mm Hg (where ptm denotes the 
total free-stream pressure) and the Reynolds number based on the step height was 
1.9 x 106. 

The results of the experiments showed that the upstream wall boundary layer 
separates from the corner of the step (figure 7) .  It forms a free shear layer bounded 
below by a region of recirculating flow with large mean velocities and above by 
external irrotational flow. The pressure coefficient maintains an approximately 
constant value over the first three-fifths of the separated region, then rises 
monotonically over the remaining distance to the reattachment point. After 
reattachment of the boundary of the separated flow to the wall downstream of the 
step, the velocity profiles indicate that the shear layer persists for long distances 
downstream, and with a thickness which is of the same order of magnitude as the step 
height. In order to test the experimental data against that collected by Narayanan 
et al. (1974), Tani et al. (1961), Moss & Baker (1980) and Roshko & Lau (1965), all 
five sets of results were plotted to reveal the variation of the coefficient C p  with x/x, 
(figure 8). It can be seen that there is an excellent agreement. Although not much 
explanation has been given in the literature regarding the remarkable universality of 
this form of correlation, it seems clear that such a presentation of results must be 
more accurate than merely plotting the pressure coefficient C, against x/x,, because 
the expression does not explicitly contain the undisturbed static pressure p,.  In 
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experiments designed to measure the pressure distribution on the wall of a backward- 
facing step, the accuracy of the measurement of p ,  is likely to be affected both by 
the fact that it is measured a t  different locations and also by whether corrections to 
the wind tunnel wall are made to account for blockage effects. Assuming Reynolds- 
number independence, CP will be a function of non-dimensional distance from the 
step wall only. 
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FIGURE 8. Graph of (Cp-Cpml0)/(l -CPmln) against x/x, for the five sets of data. 

3. A composite model for flow past a backward-facing step 
We now propose a model of the flow past a step in which the separated flow is 

represented by a closed region of fluid at  constant pressure followed by a closed 
region of recirculating fluid (figure 9). The separated flow is again assumed to be 
bounded by a thin shear layer. The velocity profiles for the flow past the step indicate 
that the vorticity of the recirculating flow is close to constant from the end of the 
region of constant pressure downstream of the step to the reattachment point. Thus 
the present model is similar to the analysis of Childress but differs in that the 
separated flow is assumed to give rise to a constant wall pressure coefficient for a 
distance L downstream of the step. In practice, i t  is likely that the flow will contain 
multiple eddies near to the wall rather than just a single vortex. The present model 
is therefore the simplest multiple-eddy model that could be proposed. We suppose 
that the shear layer reattaches to the wall at  a distance aL (a > 1) downstream of the 
step, enclosing a constant-vorticity region of recirculating flow in L < z < d. Thus 
the coordinates of the separation and reattachment points of the shear layer are 
taken to be ( 0 , H )  and ( c c L , O )  respectively. The irrotational free-stream flow is 
designated region I, and the separated region is divided into region 11, where the 
pressure is constant, and region 111, where the vorticity is constant. The vorticity in 
the proposed model represents the vortical nature of the true flow. Although it 
cannot be expected to capture the full structure of the real flow, it may be interpreted 
as averaged vorticity. 

We recall that the thickness of the separated shear layer is assumed to be an order 
of magnitude smaller than the thickness of the whole separated region. Moreover the 
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FIGURE 9. Diagram of the modelled flow field. 

pressure p ,  in the separated region must differ from p ,  by a small amount in order 
for the free-stream deflection to be small. Hence we define E to be the magnitude of 
the constant pressure coefficient immediately downstream of separation, i.e. 

We could equally have defined E to be the flow deflection H / L ,  as did Childress. 
However, p ,  is more easily measured than L and the two definitions differ only by 
an O(1) scaling factor h where 

H 
E = A- .  L 

We now consistently let the thickness of the separated region be represented by 

y = S ( x ;  E ) .  

The boundary conditions for S ( x )  are S(0) = H ,  S(aL) = 0, and for smooth separation 
at x = 0 and reattachment at x = aL without a stagnation point in the external flow 
we have Sl(0) = s'(aL) = 0. The values of E ,  a and L are unknown and must be 
determined experimentally. The stream function in region I is represented to first 
order in E by 

Y 
x-t 

Sl(t)tan-l-dt (-a < x < a ,  ~ 2 0 ) .  

The boundary conditions satisfied by Yl are 

Yl=O on y = H ,  x < O  and y = O ,  x > a L  

Yl=O on y = S ( x ) ,  O < x < d .  

The wall pressure coefficient is given by 

and is constant in region 11, 0 < x < L. 

determined ; hence the stream function Y, satisfies 
In region 111, the flow is assumed to have constant vorticity wo which is to be 

V2Y3 = - W o ,  L < x < d, 0 < y < S ( x )  (3) 

and so we take U ; = O  on y = O  ( L < x < d ) .  (4) 
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The scalings for region I1 are taken to be 

x = Lx*, y = €Ly*, S (x )  = ELS*(X*). 

The same scalings also hold in region I11 where, in addition, 

Y ( x ,  y ; E )  = &J,LY*(X*,  y * ) ,  wo = E-fU,"*/L, 

u ( x ,  y ; E )  = Bum u*(x*, y*) ,  w(x, y ;  E )  = EiU, w*(x*, y*) .  
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These scalings are chosen so that the pressure may be balanced across the dividing 
streamline and be consistent with the order of magnitude of the pressures predicted 
by thin-aerofoil theory. We analyse region I11 first; (3) and (4) become to lowest 
order 

a?P: - - - - w * ,  1 < x* < a, 0 < y* < S*(x*) 
ay*2 

and Y: = 0 on y* = 0 and y* = S*(x*),  

so that Y: is given by 

Y:(x* ,  y*)  = -$* y*(y*-S*(x*)) ,  1 < x* < 01, 0 < y* < S*(x*).  (5) 

Since the pressure is continuous across the streamline dividing the external and 
separated flows, the jump in the Bernoulli constant across this streamline is given by 

h = $ [ ( V Y l ) 2 - ( V Y 3 ) 2 ] ,  1 < X* < 01. (6) 

Substituting for Yl and Y, and expanding (6) to first order in E ,  we find that h must 
therefore satisfy 

If h* is defined by 

then it follows from ( 7 )  that 
h = pu2,(i+~h*), 

dt = h* + +*2S*2 ( x* ), 1 < x * < a .  

As in the Childress model described in the Introduction, where the assumption of 
nearly unidirectional flow breaks down near the step wall, the separated flow is fully 
two-dimensional near the boundary dividing the regions of constant pressure and 
constant vorticity defined by x* = 1 ,  0 < y* < S * ( l ) .  However, if we assume 
continuity of pressure across the region near x = L we must have 

lim C J x )  = lim C,(x) .  
X l L  z tL 

(9) 

Since the experimentally observed pressure variations are small everywhere it is 
assumed that the left-hand side of (9) may be evaluated using the stream function 
Y: defined by (5).  

In region I1 it follows from the definition of 8 that 

dt = 1 1 S*'(t) 
2, -f- x , x * - t  
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h*=1-1  *2 * 2  
2 8w ( 1 ) .  

Substituting for h* in (8), we derive the basic equation for S* : 

O < x * < l  

1 < z* < a,  

1. 
1 "S*'(t) 29 -{ -dt = {  
?I ,x*-t 

,++*2(8*2(x*)-S*2(1)), 

By making the substitution 
8 -  

S*(X*) = -S(x*) 
w*2 

the governing integro-differential equation becomes 

O < x * < l  

&4 + ( P ( x * ) - P ( l ) ) ,  1 < x* < a,  
if s(t) dt =r' (10) 7c ,x*-t 

where 

S(0) = A / A ,  &a) = 0 and F(0) = ,."(a) = 0, #(x*) = O(x*g) as x* $0, 

and A satisfies 

We may take advantage of the fact that the kernel in (10) is an odd function of 
z* -t by multiplying both sides of (10) by F(x*)  and integrating from 0 to a. The left- 
hand side is identically zero since the order of inte ration may be changed (provided 
S(x*) - o(x*-i) as x*+O and s'(x*) - o((a-x*)-z) as x* +a) and we arrive a t  the 
relationship 

F 

so that 
S(1) - = (gy. 

Childress derived a similar relationship for his model by considering a global force 
balance. (By an extension of D'Alembert's paradox, a consideration of the kinetic 
energy of the fluid shows that the relative lateral displacement of the wall streamline 
a t  x* = f 00 must equal the horizontal force in non-dimensional terms.) Such simple 
results are common to integral equations taking the form of (10) with the right-hand 
side being a function of Sonly and with zero-slope conditions at the ends of the range. 
Note that (11)  would still hold even without the constraint on slopes at  the 
endpoints, but now we cannot change the order of integration as before. However, 
we could still appeal to the force balance argument. 

Before discussing the numerical solution of (10) it is interesting to consider the 
dimensionality of the solutions. For given values of the step height H ,  and the free- 
stream velocity Urn, Childress was able to obtain a unique non-dimensional streamline 
height ~ - ~ s * ( x : * ) .  His model therefore possessed a one-parameter family of solutions 
since, to  obtain the fully dimensional solution, the length L (the analogue to (11)  
providing the unknown vorticity wo)  was required. It seems plausible that the 
addition of the constant-pressure region might increase the dimensionality by two 
since p ,  and a are both unknown. However p ,  is the value of the pressure as x 4 L and 
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as x t L, and in fact the dimensionality is only increased by one because we can obtain 
a non-trivial identity similar to ( I  1) by multiplying (10) by [t(a - t)]-i and integrating. 
This yields 

Equations (10) and (12) suggest that we require only one parameter, a, to obtain the 
non-dimensional solution for S(x*). Since the value of h is then known for a given H 
via (1  1), we only need the two parameters e and L to finally obtain the solution in 
dimensional form ; the present model contains two degrees of freedom. Note that 
once we have specified a from the experiment there is also another possibility: we 
might regard H as 'unknown' and use experimental data for e and L to calculate a 
value for H. This procedure allows us to determine the 'apparent step height ' which 
is experienced by the flow. 

We may solve (10) using the procedure of Fitt, Ockendon & Jones (1985). Briefly, 
the idea is to avoid the processes of numerical differentiation and Hilbert transform 
quadrature wherever possible. The first step is to invert (10) to give 

where the appropriate eigensolution has been chosen to satisfy the derivative 
boundary conditions at the end points. Integrating (13) with respect to x* and 
choosing the constant of integration to satisfy S(u) = 0 now yields 

(0 < x* < a), 
and it may be shown using (1 1) and (12) that the boundary condition a t  x* = 0 is also 
satisfied. If the interval (1, a) is then discretized into sub-intervals ( t k ,  tk+l] (k = 0, . . . , 
N -  I ) ,  where to = 1, tN = a, and S2(t) is approximated as $(S2(tk) +S2(tk+1)) over each 
such interval, the scheme 

where 

and j = 0 , l . .  . , 0 < x* < a may be applied. To ensure that the zero solution is not 
recovered, a further substitution 

S(t) = 5 2 (  1) B ( t )  
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is made. The sequence of approximations Rj3_converges rapidly for each a to  a solution 
that is independent of the initial function 8,. For each specified value of a a unique 
S is calculated, and the general form of the solution is as expected. 

4. Comparisons between theory and experiment 
The experimental results described above give a value of E equal to 0.18, the length 

of the region of constant pressure is 94.5 mm and the distance of the reattachment 
point of the dividing streamline to  the wall, d is measured to be 155 mm. 

Figure 10 shows various theoretical and experimental pressure distributions, 
plotting the mean pressure coefficient CP against x/L,  the streamwise distance from 
the step wall, non-dimensionalized with respect to  the length of the constant- 
pressure region. The six curves correspond to  the following: 

(i) The experimentally measured pressure coefficient. 
(ii) Results from the Childress model, plotted so that the theoretical and 

experimental reattachment points coincide. 
(iii) Results from the constant-pressure ‘ Helmholz-Kirchhoff ’ model. Here there 

is no recirculation region, so that a = 1. The infinite pressure coefficient occurs 
because of the normal reattachment of the dividing streamline, as explained in the 
introduction. 

(iv) Results from the present model with H specified, and E and L measured from 
experiment. (In practice E and L are the easiest parameters to  measure from the 
experiment . ) 

(v) Results from the present model with E , L  and a measured from experiment, 
from which we can determine an ‘apparent step height ’ as discussed further below. 

(vi) Results from the present model with E and L measured from experiment and 
the apparent step height chosen to be of the actual height H ,  the factor 2 being 
chosen to give the best fit to the data. 

The predictions from the Childress model are clearly too large, and do not exhibit 
the correct behaviour for large x /L .  This is inevitable because C, ( z /L)  + 0 as x / L  + 
00. Thus cp +-CPmin/( 1 -CPmln) as x/L + co. Since the minimum values of the 
pressure coefficient are different in the Childress results from those observed 
experimentally, the limiting behaviours will not match. In  the composite model, the 
small parameter in the problem is defined in terms of the properties of the constant- 
pressure region rather than the aspect ratio of the step height and the reattachment 
distance, thereby ensuring that the correct limiting behaviour is predicted and 
suggesting that on physical grounds this is the best way of defining E .  Of course, it 
would also be possible to present the Childress results artificially scaled to  ensure that 
the values of CPmln agree with experiment. 

The numerical calculations which give the results (v), and which use the value of 
a measured from experiment determine an ‘apparent step height’ as mentioned 
previously, which is found to  be between one half and one third of the actual height. 
I n  practice it is very difficult to relate the parameter a that appears in the model to 
any value of a that  may be measured in the real flow. This suggests that the apparent 
step height should be considered as the key variable in the problem in preference to 
the quantity a that  was incorporated into the model leading to the singular integro- 
differential equation. Indeed, when comparing the composite model with the real 
flow in figure 1, i t  is clear that the step in the model should more closely correspond 
to  the drop from the step to the wall plus the displacement layer downstream. Owing 
to  turbulent mixing within the shear layer the displacement thickness far 
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FIGURE 10. Comparison between experimental results and different theoretical models. 
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FIGURE 11. Comparison of apparent step height and reattachment length for original composite 
model and modified model. 

downstream may be a significant fraction of the step height in the real flow. Thus the 
step size in the model may correspond to a fraction of the real step height. Figure 11 
illustrates this fact, showing the relationship between the model as originally 
proposed and the modified model. As the reattachment distance in the original model 
a, increases, H increases and the vorticity w* decreases. The modified model that led 
to good agreement with experimental results corresponds to taking values of H' < 
H and a; < a,. Our strategy therefore has been to take H = H - H , ,  where the 
calculation in the Appendix gives H ,  = iH .  

In connection with the concept of apparent step height, it is of interest to calculate 
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the shape of the separated region experienced by the separated flow using the 
experimental pressure distribution. This calculation is described in the Appendix, the ‘ 
results showing that the separation streamline never reattaches and the apparent fall 
in streamline height is approximately 2 of the step height. This is consistent with the 
apparent step height that gives the best fit to the experimental results.? 

5. Concluding remarks 
We have proposed a model for flow down a backward-facing step, employing the 

assumption that the separated flow region consists of a region of constant pressure 
followed by a region of constant vorticity. The introduction of more unknown 
parameters into the problem leads to a solution having one more degree of freedom 
than was present in the earlier model of Childress, allowing better comparisons with 
experiment to be made. Although there are a number of different possible ways of 
performing the comparison, depending on what is measured from the experimental 
data and what is regarded as ‘known’, the most successful agreement is obtained 
using an apparent step height which is i of the true step height. 

An inverse calculation may be performed on the experimental pressure- 
distribution data to reconstruct the shape of the dividing streamline. This suggests 
that under normal experimental conditions there is no actual reattachment to the 
wall, and instead a layer of appreciable thickness exists for all x. The calculation also 
leads to almost exactly the apparent step height (gH) that gives the best fit to the 
experimental data. Bearing in mind the universality of the experimental curves when 
plotted in the appropriate variables, it seems that fairly good agreement may be 
achieved by the inviscid model that has been proposed, without having to introduce 
complicated models of turbulence. 

Clearly, to predict the flow behind steps with complete accuracy, the inclusion of 
viscosity is required. In spite of this, the insight which can be gained from 
considering inviscid models can be valuable as they give us an idea of the deficiencies 
and capabilities of inviscid flow theory. In addition to this, the results discussed 
above constitute evidence that in many separated flows there is a case for including 
both Helmholz-Kirchhoff and Prandtl-Batchelor regions in the flow. 

The authors are grateful to the referees for their helpful comments which led to a 
substantial improvement in the presentation of the results in this paper. K. O’Malley 
acknowledges the support of the Science and Engineering Research Council. 

Appendix. Calculation of the shape of the shear layer using the pressure 
distribution 

Previously, we have used experimental observation and mathematical modelling 
to calculate the equation of the streamline y = S(x )  dividing the external flow from 

t Note that i t  is possible to make allowances for the shear layer by proposing a constant- 
pressure/constant-vorticity model where the dividing streamline does not reattach to the wall 
downstream of the step, but instead joins with a shear layer of constant unknown height, H, say. 
We refer to this as an ‘added shear layer’ model. ‘Reattachment’ to the shear layer is still 
tangential, but the boundary condition is now changed. The result is a problem that can be solved 
numerically (details are given in O’Malley 1988) to yield a three-parameter family of solutions. 
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we have calculated the resulting pressure distribution for comparison with 
experiment. I n  the cases where either the step height or the length of the 
reattachment is measured experimentally and used in the mathematical model, 
agreement with the experimental results is only slightly better than for the Childress 
model, and the results clearly indicate that substantially better agreement would be 
obtained if a step height less than the true step height or a reattachment length less 
than the experimental reattachment length were used. The reason for this is evident : 
our modelling of the shear layer as a thin region over a t  least part of the flow is not 
sufficiently accurate. Indeed, the velocity profiles indicate the existence of an 
extensive wake region consisting of a shear layer originating near the separation 
point, and suggest that  allowance be made for the effects of the shear-layer thickness. 
To see how to do this, rather than using the pressure distribution as a test of our 
calculation, let us try a different approach and use the experimental data and (A 1) 
to discover the fictitious 'aerofoil' section to which the external flow actually 
responds. Assuming that there is no appreciable transfer of fluid into the shear layer 
from the free stream, the thickness of the separated flow is calculated as follows. First 
we invert (A 1) to give 

If all lengths are non-dimensionalized with the step height H ,  i.e. 

then (A 2 )  becomes 
x = H Z ,  y = Hy", S ( X )  = HS"(P), 

Naturally to  calculate S"(Z) from (A 3) we require data for the pressure coefficient for 
all real Z, and experimentally this is not available. It is therefore necessary to make 
some assumptions about the decay of the experimental results outside the region 
where measurements have been taken. It should also be pointed out that to 
determine the numerical approximation to a Hilbert transform of discrete data 
must be integrated. This process must be carried out with some care if the result is 
to be both bounded at infinity and insensitive to small changes in the data. An 
efficient way to accomplish this is to express the known pressure data in functional 
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form via a linear approximation (higher-order approximations may be used but do 
not materially improve the accuracy) and approximate the pressure outside the 
experimental region using the function 

bP 
f(Z) = - 

a2 + Z2 

with a and b suitably chosen to ensure that the integral of the pressure coefficient is 
zero over the real line (if this is not so then the integral of the Hilbert transform 
cannot possibly behave like a constant at Z = co), exhibits the correct form of 
decay for large 2, and is continuous. This functional form is especially convenient as 
the Hilbert transform required may now be calculated analytically. Assuming that 
the experimental data are given over the region [-tK,tK], the equation of the 
dividing streamline may be expressed as 

where 

Using this formula and performing the integration numerically, s"(Z) is evaluated for 
ZE (-20.0,20.0) and the results are plotted in figure 12. The equivalent step height 
may be inferred from the values of the calculated s" as i?+ f co. In this case, the 
calculations proved to be insensitive to small changes in the data, and gave s"+0.254 
and 1 as Z+ f co respectively, which led to a total jump in s" of about 0.746. We 
conclude that the wake flow effectively forms a body whose thickness is of a similar 
order of magnitude to the step height, and that a value of about 0.75 should be used 
for the 'apparent step height ' in order to give the best agreement with experimental 
results. 
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